UROPELTIDAE Müller, 1832

Pyron, Robert Alexander, Ganesh, Sumaithangi Rajagopalan, Sayyed, Amit, Sharma, Vivek, Wallach, Van & Somaweera, Ruchira, 2016, A catalogue and systematic overview of the shield-tailed snakes (Serpentes: Uropeltidae), Zoosystema 38 (4), pp. 453-506 : 471-472

publication ID

https://doi.org/10.5252/z2016n4a2

publication LSID

urn:lsid:zoobank.org:pub:BFFD82EF-50C9-42BF-8493-DF57591EA4FF

persistent identifier

https://treatment.plazi.org/id/03A82A47-830F-FF96-FEFD-F9C6FAB77A43

treatment provided by

Felipe (2021-03-03 17:02:42, last updated by Plazi 2023-11-01 22:57:55)

scientific name

UROPELTIDAE Müller, 1832
status

 

UROPELTIDAE Müller, 1832

TYPE GENUS. — Uropeltis Cuvier, 1829 by subsequent designation of Fitzinger (1843).

INCLUDED GENERA. — Brachyophidium , Melanophidium , Platyplectrurus , Plectrurus , Pseudoplectrurus , Teretrurus , Rhinophis , and Uropeltis .

DIAGNOSIS. — Uropeltids are distinguished from all other amniotes by a unique condition of the occipito-vertebral joint ( Baumeister 1908; Hoffstetter 1939; Williams 1959). In all species examined thus far (including species from Melanophidium , Platyplectrurus , Plectrurus , Rhinophis , Teretrurus , and Uropeltis ), the second vertebra articulates directly with the occipital condyle. These elements exhibit simple matching convexity and concavity, with no notching or indentation, and there is no intervening odontoid process. The neural arch of the atlas is always present and articulates directly with the neural arch of the second vertebra and the convexity of the occipital condyle. Furthermore, Uropeltidae differs significantly from its sister lineage, Cylindrophiidae + Anomochilus , in the following characteristics of visceral anatomy: longer trachea (mean 31% of SVL vs 27%), shorter right lung (23% vs 29%), more posterior orifice of the left lung (32% vs 26%), larger snout-heart interval indicating a more posterior heart (32% vs 27%), larger kidney-vent interval indicating more anterior kidneys (20% vs 13%), larger heart (4.3% vs 3.4%), smaller liver (23% vs 29%), larger right kidney (7.8% vs 5.1%), more anterior right kidney (84% vs 90%), larger left kidney (7.5% vs 4.9%), more anterior left kidney (88% vs 92%), more anterior junction of the systemic arches (–2% vs 0.4%), and more anterior gallbladder (68% vs 74%).

PHYLOGENETIC DEFINITION. — Includes the Most Recent Common Ancestor (MRCA) of Melanophidium wynaudense and Uropeltis ceylanica , and all descendants thereof, and all species more closely related to U. ceylanica than to Cylindrophis ruffus ( Fig. 1 View FIG ).

DISTRIBUTION. — Peninsular India and Sri Lanka, primarily in the southern Western Ghats of India and southwestern and central Sri Lanka, but with a few species in the Eastern Ghats and northern Western Ghats of India, and northern Sri Lanka ( Smith 1943; Rajendran 1985). Many species are highly restricted geographically, and known only from a few specimens and localities.

DESCRIPTION

Uropeltids are small snakes (generally <500 mm total length), usually fossorial though occasionally surface active, that feed primarily on earthworms and other invertebrates ( Smith 1943; Rajendran 1985). Many species of Rhinophis and Uropeltis have hypertrophied anterior-trunk musculature to facilitate burrowing (occasionally over a meter underground), with associated fusion of the skull elements (see Gans et al. 1978; Rieppel & Zaher 2002). Many species (especially of Rhinophis and Uropeltis ) have a highly specialized tail presenting a keratinized disk or plate with keels or projections, generally considered to be of unknown function ( Smith 1943; Rajendran 1985). In most species, a polygonal ocular shield covers the eye. In some taxa ( Platyplectrurus , Plectrurus , and Teretrurus ), the supraocular and postocular scales are separated, and the eye is distinct. As fas as is known, all uropeltids are viviparous ( Smith 1943; Rajendran 1985). All species have four supralabials, with the second and third in contact with the nasals, no internasals, and no loreal (with rare individual variation; see Constable 1949). A temporal is present in some taxa ( Brachyophidium , Platyplectrurus , and Teretrurus ), separating the parietal from the fourth supralabial, the latter two of which are in contact in the remaining taxa. The anal and subcaudals are divided, and the tail is short (c. 2-8% SVL; see data in Rajendran 1985; Table 2). Little is known about hemipenial morphology ( Smith 1943; Constable 1949). The organ in Melanophidium is short and thick, lacking spines, with the sulcus spermaticus winding through a series of long, convoluted folds ( Smith 1943). In Uropeltis grandis , it is longer and more slender, and covered with fine spines ( Smith 1943). In Rhinophis lineatus Gower & Maduwage, 2011 , it is moderately long (c. 4 mm), slender, and subcylindrical, with curved spines covering the distal third, with the first two-thirds smooth, and a shallow, smooth sulcus spermaticus ( Gower & Maduwage 2011). In R. dorsimaculatus Deraniyagala, 1941 , it is similarly long, slender, and subcylindrical, with fine spines covering most of the asulcate surface, and a smooth sulcate surface with shallow, smooth sulcus spermaticus ( Gower & Wickramasinghe 2016).

REMARKS

Some previous authors considered Uropeltidae to form a clade with Aniliidae , Cylindrophiidae , and Anomochilidae Cundall, Wallach & Rossman, 1993 , called Anilioidea (see Lee & Scanlon 2002; Conrad 2008; Gauthier et al. 2012), but this is rejected by most large-scale molecular analyses (see Wilcox et al. 2002; Gower et al. 2005; Wiens et al. 2012; Pyron et al. 2013a). From a biogeographic perspective, monophyly of these four families also seems extremely unlikely. The clade would have to be>150Ma to explain their distribution via Gondwanan vicariance. However, Alethinophidia has been dated to c. 100Ma ( Pyron & Burbrink 2012). Given the relatively young age of the four families, a complex route of dispersal from South America to India during the Cenozoic, with no relicts in intervening areas would be needed to account for their biogeographic distribution if they formed a single clade. Rather, large-scale convergence in aspects of cranial and verte- bral morphology related to burrowing (see Wiens et al. 2010) likely explains the morphological similarities of Aniliidae to Cylindrophiidae , Anomochilidae and Uropeltidae .

BAUMEISTER K. L. 1908. - Beitrage zur Anatomie und Physiologie der Rhinophiden: Integument, Drusen der Mundhohle, Augen und Skelettsystem. Zoologische Jahrbucher. Abteilung fur Anatomie und Ontogenie der Tiere 26: 423 - 526.

CONRAD J. L. 2008. - Phylogeny and systematics of squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History 310: 1 - 182. https: // doi. org / 10.1206 / 310.1

CONSTABLE J. D. 1949. - Reptiles from the Indian Peninsula in the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoology 103: 59 - 160.

CUNDALL D., WALLACH V. & ROSSMAN D. A. 1993. - The systematic relationships of the snake genus Anomochilus. Zoological Journal of the Linnaean Society of London 109: 275 - 299.

CUVIER G. 1829. - Le Regne animal distribue d'apres son organisation, pour servir de base a l'histoire naturelle des animaux et d'introduction a l'anatomie comparee. Tome II. Nouvelle edition, revue et augmentee. Deterville, Paris, 406 p.

DERANIYAGALA P. E. P. 1941. - A new fossorial snake (Rhinophis dorsimaculatus) from Ceylon. The Journal of the Bombay Natural History Society 42: 800 - 802.

FITZINGER L. J. F. J. 1843. - Systema reptilium. Fasciculus primus. Amblyglossae. Braumuller et Seidel Bibliopolas, Vindobonae, 106 p.

GANS C., DESSAUER H. C. & BAIC D. 1978. - Axial differences in the musculature of uropeltid snakes: the freight-train approach to burrowing. Science 199: 189 - 192.

GAUTHIER J. A., KEARNEY M., MAISANO J. A., RIEPPEL O. & BEHLKE A. R. 2012. - Assembling the Squamate Tree of Life: perspectives from the phenotype and the fossil record. Bulletin of Peabody Museum of Natural History 53: 3 - 308. https: // doi. org / 10.3374 / 014.053.0101

GOWER D. J., VIDAL N., SPINKS J. N. & MCCARTHY C. J. 2005. - The phylogenetic position of Anomochilidae (Reptilia: Serpentes): first evidence from DNA sequences. Journal of Zoological Systematics and Evolutionary Research 43: 315 - 320.

GOWER D. J. & MADUWAGE K. 2011. - Two new species of Rhinophis Hemprich (Serpentes: Uropeltidae) from Sri Lanka. Zootaxa 2881: 51 - 68. https: // doi. org / 10.11646 / zootaxa. 4158.2.3

GOWER D. J. & WICKRAMASINGHE L. J. M. 2016. - Recharacterization of Rhinophis dorsimaculatus Deraniyagala, 1941 (Serpentes: Uropeltidae), including description of new material. Zootaxa 4158: 203 - 212.

HOFFSTETTER R. 1939. - Sur l'articulation occipito-vertebrale des Uropeltidae (ophidiens fosseurs). Bulletin du Museum d'histoire naturelle, Paris 11: 426 - 433.

LEE M. S. Y. & SCANLON J. D. 2002. - Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews 77: 333 - 401.

MULLER J. 1832. - Beitrage zur Anatomie und Naturgeschichte der Amphibia. Zeitschrift fur Physiologie 4: 190 - 275.

PYRON R. A. & BURBRINK F. T. 2012. - Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 66: 163 - 178.

PYRON R. A., BURBRINK F. T. & WIENS J. J. 2013 a. - A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13: 93. https: // doi. org / 10.1186 / 1471 - 2148 - 13 - 93

RAJENDRAN M. 1985. - Studies in uropeltid snakes. Madurai Kamaraj University, Madurai, 132 p.

RIEPPEL O. & ZAHER H. 2002. - The skull of the Uropeltinae (Reptilia, Serpentes), with special reference to the otico-occipital region. Bulletin of the Natural History Museum: Zoology 68: 123 - 130.

SMITH M. A. 1943. - The Fauna of British India, Ceylon and Burma, Including the Whole of the Indo-Chinese Sub-Region. Reptilia and Amphibia. Vol. 3 (Serpentes). Taylor & Francis, London, 583 p.

WIENS J. J., KUCZYNSKI C. A., TOWNSEND T., REEDER T. W., MULCAHY D. G. & SITES J. W. JR. 2010. - Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Systematic Biology 59: 674 - 688. https: // doi. org / 10.1093 / sysbio / syq 048

WIENS J. J., HUTTER C. R., MULCAHY D. G., NOONAN B. P., TOWNSEND T. M., SITES J. W. JR. & REEDER T. W. 2012. - Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters 8: 1043 - 1046. https: // doi. org / 10.1098 / rsbl. 2012.0703

WILCOX T. P., ZWICKL D. J., HEATH T. A. & HILLIS D. M. 2002. - Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution 25: 361 - 371.

WILLIAMS E. E. 1959. - The occipito-vertebral joint in the burrowing snakes of the family Uropeltidae. Breviora 106: 1 - 10.

Gallery Image

FIG. 1. — Molecular phylogeny of Uropeltidae Müller, 1832 based on Bayesian inference of 5.248bp of DNA-sequence data from 6 genes. Numbers at nodes represent posterior probabilities.

Kingdom

Animalia

Phylum

Chordata

Class

Reptilia

Order

Squamata

Family

Uropeltidae