Matuanus mirabilis Desutter-Grandcolas, 1997
publication ID |
978-2-85653-605-6 |
persistent identifier |
https://treatment.plazi.org/id/E42EAE24-FFCC-FFF5-FEB4-F95AFADEFBA0 |
treatment provided by |
Felipe |
scientific name |
Matuanus mirabilis Desutter-Grandcolas, 1997 |
status |
|
Matuanus mirabilis Desutter-Grandcolas, 1997 View in CoL
Figs 6J, 17, 27E
Matuanus mirabilis Desutter-Grandcolas, 1997b: 155 View in CoL .
TYPE MATERIAL. — Holotype male ( MNHN-ENSIF 1091 ) (examined): New Caledonia, 3 km WNW Col d’Amieu , N La Foa, 450-550 m, forêt sempervirente, 18.II.1994 (9), jour (L. Desutter-Grandcolas) . Allotype female ( MNHN-ENSIF 1092 ) (examined): same locality and collector as the holotype, 17.II.1994 (19), nuit, au sol, sous le rebord d’un talus. MNHN .
TYPE LOCALITY. — New Caledonia, 3 km WNW Col d’Amieu , N La Foa, 450-550 m, forêt sempervirente .
ADDITIONAL CHARACTERS. — Dorsum of head dark brown, except for a yellow line joining fastigium apex to each eye and fusing posteriorly with yellow line behind eye, and except for a H-shaped yellow line on occiput (Fig. 6J).
Male: FW venation (Fig. 17). Stridulatory file present (281 teeth, n = 1) with functional harp.
Female: ovipositor well surpassing hind wings; apex of dorsal valves with thin striations on outer surface, as in M. elegans but restricted to tip and ventral margin (Fig. 27E).
DISCUSSION
The cricket fauna of New Caledonia is very rich and diverse: of the 117 species mentioned from the Territory up to now, including the species described here, 110 (94%) are exclusively known from New Caledonia. The high level of taxonomic endemism is common in many clades diversified in New Caledonia. It is however not the only particularity of New Caledonian biota, since it is often associated with the particular status of its components. The most emblematic example is Amborella trichopoda Baillon, 1869 , which has been characterized as the putative sister clade of the whole Angiosperms (Goremykin et al. 2003; Soltis & Soltis 2004). In crickets, several taxa reveal high endemic clades in subsequent phylogenetic analyses. Such is the case of Agnotecous Saussure, 1878 , which represents the New Caledonian counterpart of a genus distributed over the whole indo-malaysian area, i.e. Lebinthus Saussure, 1878 ( Robillard & Desutter-Grandcolas 2004a). In fact, 13 of the 36 cricket genera recorded in New Caledonia could be endemic to the Territory. At the other extreme, some taxa are just absent from New Caledonia, while they usually occur in other tropical areas ( Schmid 1982), or are present through widely distributed, sometimes worldwide, species. In crickets, such clades exist in Oecanthidae and Trigonidiinae (Trigonidiidae) , this last subfamily being usually abundant and diversified in all tropical forests. These taxonomic, phylogenetic and biogeographic disparities demonstrate a real diversity of evolutionary histories among New Caledonian biotas, which is remarkable for a restricted, insular area.
An additional dimension of the originality of the fauna of New Caledonia is the specificity of biological attributes and behaviors. From this point of view, Matuanus is particularly interesting because of the diversity of the male stridulatory apparatus. From the material we studied, some species completely lack a stridulum ( M. flavomaculatus , M. caledonicus , M. azurensis and M. bruneonervus , Figs 7-10), while others show a functional stridulatory file ( M. priapus , M. elegans and M. rectinervus , Figs 1-3) or both a file and a harp, without a well-shaped mirror ( M. mirabilis , M. bicolor , Figs 17-19). Our knowledge of sound production in crickets suggests that both the species with a file only, and those with a file and a harp should be able to emit an acoustic signal (Bennet-Clark 2003). The quality and features of the sound that could be emitted by the species devoid of a harp, i.e. of the main resonator of the forewing, is however problematic. Sound radiation could be performed by the veins surrounding the file, as demonstrated by Bennet-Clark (op. cit.), but the efficiency of the system is difficult to predict in the absence of an enlarged forewing area. One additional question is the frequency spectrum of the sound that could be emitted by these species. Up to recently, all available data showed that crickets sing at relatively low dominant frequencies, usually from 2 to 8 kHz (Leroy 1979; Bennet-Clark 1989). High frequency calling has been described recently in Eneopterinae crickets ( Desutter-Grandcolas 1997 c, 1998), and has even been shown a characteristic trait of a whole cricket tribe ( Robillard & Desutter-Grandcolas 2004a). Moreover, it has been shown that the high dominant frequencies, up to near 30 kHz, were either the second or the third harmonic of the sound, according to the taxa (Robillard et al. 2007). These high-frequency sounds were most often associated with a diversity of tegminal venation, characterized by a
complex venation pattern at the level of the harp, and very often the lack of a true mirror (Robillard & Desutter- Grandcolas 2004b). These data lead to suspect that at least some Matuanus species could first possess a true acoustic communication, and second that their signal could be emitted at high frequencies. If this proves to be the case, then high-frequency calling would become a more widely distributed phenomenon in crickets than presently thought. Other cricket species, as some Tafaliscinae , a neotropical subfamily of Eneopteridae , and several Phalangopsidae crickets, show incomplete stridulums and could be good candidates for high frequency calling.
The question of how these structures and behaviors evolved would also be most interesting to study. Regarding the diversity of the acoustic structures, Matuanus is an ideal model clade to analyze this question (Grandcolas et al. 1997). It is impossible to predict the results of such a study, but some main hypotheses can by now be proposed. The structures could first have evolved linearly and gradually toward a complete lack of acoustic structures, as crickets have very often lost their stridulum during evolution ( Otte 1992). They could also have evolved more or less gradually toward a re-acquisition of a functional stridulum, as reversals have been documented for acoustics in other ensiferan taxa ( Desutter-Grandcolas 1997 d; Montealegre-Z & Morris 2004). Tegminal structures could finally have evolved in a non gradual way and thus confirm the hypothesis of evolutionary lability proposed for acoustic communication in phalangopsid crickets ( Desutter-Grandcolas 1997 d). No data are yet available to discuss how the properties of the signals and reproductive behaviours associated with each venation pattern could have evolved in Matuanus . The first step to study will be to document the natural history of these species, and especially their acoustic signals.
ACKNOWLEDGEMENTS
We thank S. Ingrish for his help in improving the manuscript and J. Najt for the opportunity to participate to the program “Biodiversité terrestre en Nouvelle Calédonie” (DRED/MNHN). We are indebted to M. Boulet (Service de l’environnement et de la gestion des parcs et réserves, Direction du développement rural, Nouméa), M. Lavandier & M. Geoffroy (Direction du développement rural, La Foa) for the facilities they offered during the field trips.
REFERENCES
BENNET-CLARK H. C. 1989. — Songs and the physics of sound production. in DESUTTER-GRANDCOLAS L. 1997a.— Le peuplement de grillons (Orthoptères HUBER F.,MOORE T.E.& LOHER W. (eds), Cricket behavior and neurobiology. Grylloidea) des sous-bois forestiers du Col d’Amieu (Nouvelle-Calédonie). Comstock Publishing Associates, Ithaca and London: 227-261. 2ème partie.Analyse systématique, in NAJT J.& MATILE L. (eds), Zoologia BENNET-CLARK H. C. 2003. — Wing resonances in the australian field Neocaledonica 4. Mémoires du Muséum national d’Histoire naturelle cricket Teleogryllus oceanicus. Journal of experimental Biology 206: 171: 137-163.
1479-1496. DESUTTER-GRANDCOLAS L. 1997 b.— Le peuplement de grillons (Orthoptères, BROOKS D.R.&MCLENNAN D.A.2002.— The nature of biodiversity.An evolutionary Grylloidea) des sous-bois forestiers du Col d’Amieu (Nouvelle-Calédonie).I. voyage of discovery. The University of Chicago Press, Chicago: 668 p. Etude du peuplement, in NAJT J.& MATILE L. (eds),Zoologia Neocaledonica CHOPARD L. 1915. — Gryllidae de la Nouvelle-Calédonie et des Iles Loyalty, 4. Mémoires du Muséum national d’Histoire naturelle 171: 125-135.
in SARASIN F. & ROUX J. (eds), Nova Caledonia, Recherches scientifiques DESUTTER-GRANDCOLAS L. 1997c. — Les grillons de Nouvelle-Calédonie en Nouvelle-Calédonie et aux Iles Loyalty, Zoologie (A.). C. W. Kreidels (Orthoptères, Grylloidea): espèces et données nouvelles, in NAJT J. & Verlag, Wiesbaden: 131 -167. MATILE L. (eds),Zoologia Neocaledonica 4. Mémoires du Muséum national CHOPARD L. 1951. — A revision of the Australian Grylloidea. Records of the d’Histoire naturelle 171: 165-177.
South Australian Museum 9: 397-533. DESUTTER-GRANDCOLAS L.1997d.— A phylogenetic analysis of the evolution CHOPARD L. 1968. — Pars 12. Fam Gryllidae: Subfam. Mogoplistinae, of the stridulatory apparatus in True Crickets (Orthoptera, Grylloidea). Myrmecophilinae, Scleropterinae, Cachoplistinae, Pteroplistinae, Cladistics 13: 101-108.
Pentacentrinae, Phalangopsinae, Trigonidiinae, Eneopterinae. Fam. DESUTTER-GRANDCOLAS L. 1998.— Broad-frequency modulation in cricket Oecanthidae, Gryllotalpidae, in BEIER M (ed.), Orthopterorum Catalogus. (Orthoptera,Grylloidea) calling songs:two convergent cases and a functional Dr.W.Junk N.V., ‘s Gravenhage: 215-500. hypothesis. Canadian Journal of Zoology 76: 2148-2163.
CHOPARD L.1970.— Ergebnisse der Österreichischen Neukaledonien-Expedition DESUTTER-GRANDCOLAS L. 2002. — The Phalangopsidae (Orthoptera 1965. Annalen des Naturhistorisches Museums Wiens 74: 285-288. Grylloidea) of New Caledonia, with descriptions of four new species, in DESUTTER L.1987.—Structure et évolution du complexe phallique des Gryllidea NAJT J.& GRANDCOLAS P. (eds). Zoologia Neocaledonica 5. Systématique (Orthoptera) et classification des genres néotropicaux de Grylloidea.1ère partie. et endémisme en Nouvelle-Calédonie. Mémoires du Muséum national Annales de la Société entomologique de France (N.S.) 23: 213-239. d’Histoire naturelle 187: 103-115.
DESUTTER-GRANDCOLAS L. 2003.— Phylogeny and the evolution of acoustic LEROY Y. 1979. — L’univers sonore animal. Paris, Bordas: 350 p.
communication in extant Ensifera (Insecta, Orthoptera). Zoologica Scripta MONTEALEGRE-Z.F.& MORRIS G.K.2004.— The spiny devil katydids, Panacanthus 32: 525-561. Walker (Orthoptera:Tettigoniidae):an evolutionary study of acoustic behaviour DESUTTER-GRANDCOLAS L., METRANI S. & BALAKRISHNAN R. 2003. — and morphological traits. Systematic Entomology 29: 21-57.
Systematics and song structure of Prozvenella bangalorensis sp. n. with a OTTE D. 1992. — Evolution of cricket songs. Journal of Orthoptera Research discussion of song features in Podoscirtini crickets (Orthoptera,Grylloidea, 1: 25-49.
Podoscirtidae). Insect Systematics and Evolution 34: 221-237. OTTE D. 1994.— Orthoptera species file.1. Crickets (Grylloidea).Orthopterists’s DESUTTER-GRANDCOLAS L.& ROBILLARD T.2006.— Phylogenetic systematics Society and the ANSP, Philadelphia, Pennsylvania, 120 P.
and evolution of Agnotecous in New Caledonia (Orthoptera: Grylloidea, OTTE D. & ALEXANDER R. D. 1983. — The Australian crickets. Monographs Eneopteridae). Systematic Entomology 31: 65-92. of the academy of natural sciences of philadelphia 22: 1-477.
EADES D. C., OTTE D. & NASKRECKI P. 2008. — Orthoptera Species File OTTE D., ALEXANDER R.D. & CADE W.1987.— The crickets of New Caledonia Online. Version 2.0/3.4. [visited 22/07/2008], URL: http://orthoptera. (Gryllidae). Proceedings of the Academy of Natural Science of Philadelphia speciesfile.org. 139: 375-457.
GOREMYKIN V. V., HIRSCH-ERNST K. I., WÖLFL S. & HELLWIG F. H. 2003. ROBILLARD T. & DESUTTER-GRANDCOLAS L. 2004 a. — Phylogeny and the — Analysis of the Amborella trichopoda chloroplast genome sequence modalities of acoustic diversification in extant extant Eneopterinae (Insecta, suggests that Amborella is not a basal angiosperm. Molecular Biology and Orthoptera, Grylloidea, Eneopteridae). Cladistics 20: 271-293.
Evolution 20: 1499-1505. ROBILLARD T. & DESUTTER-GRANDCOLAS L. 2004b. — High-frequency GOROCHOV A. V. 1986. — New and little known crickets (Orthoptera, calling in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae): Gryllidae) from Australia and Oceania. Revue d’Entomologie de l’URSS adaptive radiation revealed by phylogenetic analysis. Biological Journal of 65: 692-708. the Linnean Society 83: 577-584.
GOROCHOV A. V. 2003 (2004). — Taxonomy of Podoscirtinae (Orthoptera: ROBILLARD T., GRANDCOLAS P. & DESUTTER-GRANDCOLAS L. 2007. — A Gryllidae). Part 3: Podoscirtini from Madagascar and nearest regions. shift toward harmonics for high-frequency calling shown with phylogenetic Zoosystematica Rossica 12: 187-215. study of frequency spectra in Eneopterinae crickets (Orthoptera,Grylloidea, GRANDCOLAS P.,DELEPORTE P.& DESUTTER-GRANDCOLAS L. 1997.— Testing Eneopteridae). Canadian Journal of Zoology 85: 1264-1275.
evolutionary processes with phylogenetic patterns: test power and test SCHMID M. 1982.— Endémisme et spéciation en Nouvelle-Calédonie. Comptes limitations. in GRANDCOLAS P. (ed.), The origin of biodiversity in insects: Rendus de la Société de Biogéographie 58: 52-60.
phylogenetic tests of evolutionary scenarios. Mémoires du Museum national SOLTIS P.S. & SOLTIS D.E. 2004.— The origin and diversification of angiosperms. d’Histoire naturelle 173: 53 -71. American Journal of Botany 91: 1614-1626.
INGRISCH S.1997.— Taxonomy,stridulation and development of Podoscirtinae STÅL C. 1877. — Orthoptera nova ex Insulis Philippinis. Öfversigt af Kongl. from Thailand. Senckenbergiana biologica 77: 47 -75. Vetenskaps-Akademiens FÖrhandlinger Stockholm 34: 33-58.
MNHN |
Museum National d'Histoire Naturelle |
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
|
Genus |
Matuanus mirabilis Desutter-Grandcolas, 1997
Robillard, Tony & Desutter-Grandcolas, Laure 2008 |
Matuanus mirabilis
DESUTTER-GRANDCOLAS L. 1997: 155 |