Anomalepididae Taylor, 1939, 1996
publication ID |
https://dx.doi.org/10.3897/vz.73.e101372 |
publication LSID |
lsid:zoobank.org:pub:8F3D5EDA-2F18-4E5C-A53E-2F7741FF1339 |
persistent identifier |
https://treatment.plazi.org/id/C9F67FF4-02E9-FDF8-100B-2F1C4D94D2B5 |
treatment provided by |
Vertebrate Zoology by Pensoft (2023-09-28 09:29:27, last updated 2024-11-29 09:34:21) |
scientific name |
Anomalepididae Taylor, 1939 |
status |
|
Anomalepididae Taylor, 1939 View in CoL View at ENA
General information.
Anomalepididae have been considered to represent the basalmost scolecophidians, mainly due to their peculiar cranial anatomy ( Rieppel et al. 2009; Scanlon and Lee 2011; Marra Santos and Reis 2019; Linares-Vargas et al. 2021). Nevertheless, recent molecular evidence suggests that Scolecophidia is a paraphyletic assemblage, with anomalepidids instead lying either as the sister group of Alethinophidia or either as more basal to leptotyphlopids and typhlopoids ( Vidal et al. 2010; Pyron and Burbrink 2012; Pyron et al. 2013; Zheng and Wiens 2016; Mirrales et al. 2018; Burbrink et al. 2020; Zaher et al. 2023), with considerably robust evidence for the former topology (see Miralles et al. 2018). Anomalepidids represent a very old lineage, with divergence date estimates suggesting that they appeared already during the Early Cretaceous ( Miralles et al. 2018).
Previous figures of vertebrae of extant Anomalepididae have been so far presented only by List (1966), Palci et al. (2020), and Herrel et al. (2021). Among these, vertebrae from the cloacal and caudal series were presented by Palci et al. (2020). Besides these figures, important observations on the vertebral morphology of anomalepidids were made by Dunn (1941) and Dunn and Tihen (1944).
Material examined.
Anomalepis mexicana Jan , 1860 in Jan & Sordelli 1860-1866 (FMNH 22853 [Morphosource. org: Media 000383763, ark:/87602/m4/383763]; MCZ Herp R-29220 [Morphosource. org: Media 000415858, ark:/87602/m4/415858]); Helminthophis frontalis (Peters, 1860) (MCZ Herp R-55117 [Morphosource. org: Media 000415384, ark:/87602/m4/415384); Liotyphlops albirostris (Peters, 1857) (UF Herp 43324 [Morphosource. org: Media 000493244, ark:/87602/m4/493244]); Liotyphlops beui (Amaral, 1924) (SAMA R40142 View Materials ); Liotyphlops bondensis Griffin, 1916 (X-rays of CPZ-UV 7290; CPZ-UV 7291; CPZ-UV 7292); Typhlophis squamosus (Schlegel, 1839 in Schlegel 1837 -1844) (MNHN-RA-1999.8306; KUBI 69819 [Morphosource.org: Media 000075052, ark:/87602/m4/ M75052 View Materials ]) .
Description (Figs 15-18>).
Trunk vertebrae. The morphology of the trunk vertebrae is strikingly similar to other scolecophidians. See the respective part in Leptotyphlopidae above.
Trunk / caudal transition. The morphology of these vertebrae is very similar to other scolecophidians. See the respective part in Leptotyphlopidae above.
Number of vertebrae. Anomalepis mexicana (FMNH 22853): 180 (170+4+6 [posteriormost caudal vertebrae are fused]); Anomalepis mexicana (MCZ Herp R-29220): 175 (167+4+6 [posteriormost caudal vertebrae are fused]); Helminthophis frontalis (MCZ Herp R-55117): 311 (296+5+10, including a final fusion); Liotyphlops albirostris (UF Herp 43324): 239 (226+3+10, including a final fusion); Liotyphlops bondensis (CPZ-UV 7290): 201 trunk and cloacal vertebrae plus 15 caudal vertebrae (posteriomost caudal vertebrae are fused); Liotyphlops bondensis (CPZ-UV 7291): 203 trunk and cloacal vertebrae plus 13 caudal vertebrae (posteriomost caudal vertebrae are fused); Liotyphlops bondensis (CPZ-UV 7292): 228 trunk and cloacal vertebrae plus 15 caudal vertebrae (posteriomost caudal vertebrae are fused); Typhlophis squamosus (KUBI 69819): 210 (201+3+6, including a final fusion).
Data from literature: Anomalepis aspinosus Taylor, 1939: 170 trunk vertebrae plus 3 cloacal vertebrae plus 5 caudal vertebrae (but some could be missing, especially from the caudal series) ( Dunn 1941); Liotyphlops albirostris : 204-247 trunk vertebrae plus 3-5 cloacal vertebrae plus 8-16 caudal vertebrae (posteriormost 2-3 caudal vertebrae are fused) ( List 1966); Liotyphlops albirostris : 229-247 trunk vertebrae plus 5 cloacal vertebrae (i.e., bearing forked ribs) plus 8-10 caudal vertebrae ("without ribs") ( Dunn and Tihen 1944); Liotyphlops ternetzii (Boulenger, 1896): 242 trunk and cloacal vertebrae plus 11 caudal vertebrae ( Alexander and Gans 1966).
In general, it seems that the total vertebral counts of anomalepidids are considerably low (although the available data are limited and should therefore be handled with cautiousness), with the notable exception of Helminthophis Peters, 1860, where this number surpasses the 300. Number of trunk vertebrae ranges between 170 and 296. Interestingly, the very low number (around 10 or less) of caudal vertebrae approaches that observed in many typhlopids, compared to most leptotyphlopids, where this number is higher. Of note is that species of Anomalepis and Typhlophis Fitzinger, 1843, seem to possess much lower (5-6) number of caudal vertebrae compared to species of Liotyphlops (8-16) and Helminthophis (10).
Alexander, AA, Gans, C, 1966. The pattern of dermal-vertebral correlation in snakes and amphisbaenians. Zoologische Mededelingen 31: 171 - 190
Burbrink, FT, Grazziotin, FG, Pyron, RA, Cundall, D, Donnellan, S, Irish, F, Keogh, JS, Kraus, F, Murphy, RW, Noonan, B, Raxworthy, CJ, Ruane, S, Lemmon, AR, Lemmon, EM, Zaher, H, 2020. Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology 69: 502 - 520, DOI: https://doi.org/10.1093/sysbio/syz062
Dunn, ER, 1941. Notes on the snake genus Anomalepis. Bulletin of the Museum of Comparative Zoology 87: 509 - 526
Dunn, ER, Tihen, JA, 1944. The skeletal anatomy of Liotyphlops albirostris. Journal of Morphology 74: 287 - 294, DOI: https://doi.org/10.1002/jmor.1050740203
Herrel, A, Lowie, A, Miralles, A, Gaucher, P, Kley, NJ, Measey, J, Tolley, KA, 2021. Burrowing in blindsnakes: A preliminary analysis of burrowing forces and consequences for the evolution of morphology. Anatomical Record 304: 2292 - 2302, DOI: https://doi.org/10.1002/ar.24686
Linares-Vargas, CA, Bolivar-Garcia, W, Herrera-Martinez, A, Osorio-Dominguez, D, Ospina, OE, Thomas, R, Daza, JD, 2021. The status of the anomalepidid snake Liotyphlops albirostris and the revalidation of three taxa based on morphology and ecological niche models. Anatomical Record 304: 2264 - 2278, DOI: https://doi.org/10.1002/ar.24730
List, JC, 1966. Comparative osteology of the snake families Typhlopidae and Leptotyphlopidae. Illinois Biological Monographs 36: 1 - 112, DOI: https://doi.org/10.5962/bhl.title.50341
Marra Santos, FJ, Reis, RE, 2019. Redescription of the blind snake Anomalepis colombia (Serpentes: Anomalepididae) using high-resolution X-ray computed tomography. Copeia 2019: 239 - 243, DOI: https://doi.org/10.1643/CH-19-181
Miralles, A, Marin, J, Markus, D, Herrel, A, Hedges, BS, Vidal, N, 2018. Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology 31: 1782 - 1793, DOI: https://doi.org/10.1111/jeb.13373
Palci, A, Hutchison, MN, Caldwell, MW, Smith, KT, Lee, MSY, 2020. The homologies and evolutionary reduction of the pelvis and hindlimbs in snakes, with the first report of ossified pelvic vestiges in an anomalepidid (Liotyphlops beui). Zoological Journal of the Linnean Society 188: 630 - 652, DOI: https://doi.org/10.1093/zoolinnean/zlz098
Pyron, RA, Burbrink, FT, 2012. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution 66: 163 - 178, DOI: https://doi.org/10.1111/j.1558-5646.2011.01437.x
Pyron, RA, Burbrink, FT, Wiens, JJ, 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13: 93. https://doi.org/10.1186/1471-2148-13-93
Rieppel, O, Kley, NJ, Maisano, JA, 2009. Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). Journal of Morphology 270: 536 - 557, DOI: https://doi.org/10.1002/jmor.10703
Scanlon, JD, Lee, MSY, 2011. The major clades of living snakes: Morphological evolution, molecular phylogeny, and divergence dates. In: Sever, DM, Aldridge, RD, Eds., Reproductive Biology and Phylogeny of Snakes. CRC Press, Boca Raton, FL: 55 - 95, DOI: https://doi.org/10.1201/b10879-4
Schlegel, H, 1837. Essai sur la physionomie des serpents. I. Partie generale. II. Partie descriptive. Atlas. Arnz Arnz & Comp., Leiden, DOI: https://doi.org/10.5962/bhl.title.4273
Vidal, N, Marin, J, Morini, M, Donnellan, S, Branch, WR, Thomas, R, Vences, M, Wynn, A, Cruaud, C, Hedges, BS, 2010. Blindsnake evolutionary tree reveals long history on Gondwana. Biology Letters 2010: 1 - 4, DOI: https://doi.org/10.1098/rsbl.2010.0220
Zaher, H, Mohabey, DM, Grazziotin, FG, Mantilla, JAW, 2023. The skull of Sanajeh indicus, a Cretaceous snake with an upper temporal bar, and the origin of ophidian wide-gaped feeding. Zoological Journal of the Linnean Society 197: 656 - 697, DOI: https://doi.org/10.1093/zoolinnean/zlac001
Zheng, Y, Wiens, JJ, 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Molecular Phylogenetics and Evolution 94: 537 - 547, DOI: https://doi.org/10.1016/j.ympev.2015.10.009
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Order |
|
InfraOrder |
Scolecophidia |
SuperFamily |
Typhlopoidea |
Family |