Orectopora flabellum, Grischenko & Gordon & Melnik, 2018

Grischenko, Andrei V., Gordon, Dennis P. & Melnik, Viacheslav P., 2018, Bryozoa (Cyclostomata and Ctenostomata) from polymetallic nodules in the Russian exploration area, Clarion - Clipperton Fracture Zone, eastern Pacific Ocean-taxon novelty and implications of mining, Zootaxa 4484 (1), pp. 1-91 : 15-19

publication ID

https://doi.org/10.11646/zootaxa.4484.1.1

publication LSID

lsid:zoobank.org:pub:D66524CF-9C6D-4DF4-8CA2-B2C9708CF5FD

DOI

https://doi.org/10.5281/zenodo.5989781

persistent identifier

https://treatment.plazi.org/id/521587E4-563C-5515-09EE-F914884FFBD0

treatment provided by

Plazi (2018-09-28 09:03:32, last updated 2024-11-26 04:34:29)

scientific name

Orectopora flabellum
status

sp. nov.

Orectopora flabellum n. sp.

( Figs 6–8 View FIGURE 6 View FIGURE 7 View FIGURE 8 , 51 View FIGURE 51 )

Material examined. Holotype: ZIRAS 1/50673, colony detached from nodule, YMG R.V. Yuzhmorgeologiya cruise YMG4–13, Stn 316, 3 August 2014, 13.09428° N, 132.37362° W, 4933 m. Paratype: NIWA 127723, colony detached from nodule, YMG R.V. Gelendzhik cruise GLD4–12, Stn 258, 10 April 2013, 12.90213° N, 132.87047° W, 4713 m. Additional material: YMG4–07, Stns 126, 136; GLD4–08, Stns 145, 151; GLD4–09, Stns 183, 198; GLD4–11, Stns 219, 230; YMG4–13, Stn 273; YMG4–14, Stns 332, 363, 365. Total specimens examined 14.

Etymology. Latin, flabellum , a fan, used as a noun in apposition.

Description. Colony erect, flabellate, subplanar and narrowly compressed, attached by short stalk ( Fig. 6A, C View FIGURE 6 ), white. Initially with single spreading fan of zooids, more or less bilaterally symmetrical, or shortly branching as 2–3 flattened lobes, entire fan gently concave frontally, convex abfrontally ( Fig. 6B, D, E View FIGURE 6 ). At inception, first major lobe(s) comprising bilaterally compressed fascicle(s) of 10–12 autozooids, before subdivision into smaller lobes ( Fig. 8E–O View FIGURE 8 ). Colony and lobes essentially 1–2-layered, comprising, in transverse section, initially contiguous, but then laterally diverging, autozooidal tubes, backed by discontinuous series of smaller kenozooidal tubes ( Figs 6E View FIGURE 6 , 7A, C, F View FIGURE 7 , 51A, B, D, E View FIGURE 51 ). Surface of colony textured by series of thin sinuous growth lines ( Figs 6D View FIGURE 6 , 7B, E, H View FIGURE 7 ) and needle-like crystallites perpendicular to growth lines. Simple pseudopores opening externally, seemingly moderately sparse in SEM images, but more obvious and abundant in CT scans, more or less regularly distributed ( Figs 7B, E View FIGURE 7 , 51A–F View FIGURE 51 ).

Autozooidal tubes mostly very long, with several running length of colony; other tubes shorter, originating by lateral budding in plane of colony as fascicles broaden ( Fig. 51A, C View FIGURE 51 ). Earliest-established peristomes more evident on colony faces by bulging of their longitudinal tubes, secondarily budded autozooids not bulging or less obviously so ( Figs 6A, E View FIGURE 6 , 8L View FIGURE 8 ). Openings of primary and secondary autozooidal tubes at colony margin evidenced by their circular to subcircular rims, some separated sublaterally by shafts of slightly smaller diameter ( Fig. 7A, B, D, F View FIGURE 7 ), interpreted to be proximal parts of differentiating autozooids. Interior surface of zooidal tubes lined by distally imbricated foliated fabric of wedge-shaped crystallites ( Fig. 7D, G, J View FIGURE 7 ).

Kenozooids seen in transverse section at colony margin, 1–2 on abfrontal side of each autozooid ( Fig. 7A, C, F, I View FIGURE 7 ), with round to subtriangular rims. Interior surface ultrastructure as in autozooids. CT scans reveal kenozooids to be long, irregular structures descending behind or to the side of zooidal tubes ( Fig. 51B, D, E View FIGURE 51 ), occasionally communicating with neighbors via interzooidal pores, with more-numerous pseudopores to outer surface. Proximally, CT scans reveal kenozooidal chambers transition from elongate tubes to layers of squatter cushion- or amoeba-shapes ( Fig. 51A, B, F View FIGURE 51 ); each kenozooid communicating with neighbors above and below; those closer to outer surface with sparse pseudopores. Kenozooids also in axils between fascicle lobes.

Gonozooid not seen.

Ancestrula suberect, inclined at 45–55° angle to substratum ( Fig. 8B, N View FIGURE 8 ). Protoecium ( Fig. 8D View FIGURE 8 ) flared at base, with slightly smoother margin, continuous with peristome, surface with needle-like crystallites (interpreted as eroded planar-spherulitic fabric) and sparse pseudopores. Abfrontal sides of ancestrular zooid, one suberect zooid and base of erect fascicle of zooids supported by developing skirt of kenozooids and extrazooidal calcification ( Fig. 8B, E, N View FIGURE 8 ); skirt with scalloped margin depending on substratum ( Fig. 8P View FIGURE 8 ); exterior surface marked by vertical striae and ridges, and moderately sparse but evenly distributed pseudopores.

Measurements (mm). Holotype, ZIRAS 1/50673 ( Fig. 6 View FIGURE 6 ): Colony height c. 2.07 (proximal end of largest colony broken), width 3.02; three main lobes (fascicles) length 0.48–1.01, width 0.43–1.51, thickness 0.09–0.16; ‘stalk’ at point of breakage 0.33 × 0.17; ZL 1.308–1.853 (1.604 ± 0.198); PeL 0.043–0.163 (0.082 ± 0.035); PeD 0.123–0.154 (0.136 ± 0.009); ApL 0.094–0.105 (0.099 ± 0.003); ApW 0.086–0.098 (0.091 ± 0.004).

Non-type specimen GLD4–08, Stn 151 ( Fig. 8D View FIGURE 8 ): AnPeD 0.106 (n = 1).

Remarks. Orectopora flabellum n. gen., n. sp. is represented in the Russian-sector collection by 14 specimens having varied size and maturity. The novel features of this taxon defy inclusion in a named family and have required some interpretation to describe and explain them, facilitated by light microscopy, with and without staining, plus SEM and micro-CT. The form of the ancestrular zooid is similar to that in Pandanipora n. gen., and the initial colony form, comprising a short ascending series of zooids supporting an elevated structure, is reminiscent of that in Discantenna ( Gordon & Taylor, 2010) .

Distribution. Recorded from 14 stations within coordinates 12.65038– 14.57215° N, 131.73948– 134.71841° W, at depth range 4713–5275 m.

Gallery Image

FIGURE 6. Orectopora flabellum n. gen., n. sp. Holotype, ZIRAS 1/50673. A, C, E, colony respectively seen in frontal, abfrontal and apical views; B, frontal view of left-hand lobe (fascicle) in A; D, oblique abfrontal view of right-hand lobe (fascicle) in C; F, base of broken colony stalk. Scale bars: A, C, E, 500 µm; B, D, 250 µm; F, 150 µm.

Gallery Image

FIGURE 7. Orectopora flabellum n. gen., n. sp. Details of colony morphology. A, B, E, H, holotype colony; C, D, F, G, I, J, specimen GLD4–08, Stn 151. A, B, E, apical, oblique-abfrontal and abfrontal views, respectively, of middle lobe (fascicle) in Fig. 7E, showing apparent roof forming in axil between what will become two fascicle lobes; note relatively large pseudopores in neanic calcification of abfrontal wall in B and E; C, F, two views of a small fascicle showing autozooidal apertures adjacent to concave frontal face of lobe (on right), between which are larger developing chambers (either autozooidal or reproductive), and, along convex abfrontal face (on left), a row of mostly kenozoidal openings (and perhaps some incipient autozooid buds); D, G, J, magnified sequence of images showing the largest developing chamber in C and F, and ultrastructural wall fabric; H, reversed (frontal) view of fascicle tip in E; I, frontal view of chamber in D, G, J. Scale bars: A, B, E, H, 200 µm; C, F, 150 µm; D, I, 50 µm; G, J, 20 µm.

Gallery Image

FIGURE 8. Orectopora flabellum n. gen., n. sp. Colonies at early stages of astogeny. A–D, rotational views of specimen GLD4–08, Stn 151, with ancestrular region more magnified in D; E, F, rotational views of specimen GLD4–08, Stn 145; G, H, specimen GLD4–11, Stn 230; I, J, specimen GLD4–11, Stn 219; K–P, rotational views of paratype specimen, NIWA 127723. Scale bars: A–C, E–H, 300 µm; D, P, 200 µm; I–O, 500 µm.

Gallery Image

FIGURE 51. Orectopora flabellum n. gen., n. sp. Micro-CT scans of paratype, NIWA 127723, as back-face isosurface renders showing colony interiors. A, colony curvature in lateral view showing part of abfrontal (left) and frontal (right) surfaces; note large cluster of kenozooidal chambers at lower left, becoming longer distally and near autozooidal tubes; B, like A, but from opposite side, showing more of abfrontal surface; note pseudopore density; C, en face view of colony frontal surface, with only the part in the square shown as backface isosurface render; note the kenozooids in the interior angle between two-right-hand fascicles (lobes); D, E, abfrontal side of colony, with that in D showing differentiating tip of middle lobe; note elongate kenozooids on either side of or abfrontal to autozooidal tubes; F, close-up of part of A showing variability of kenozooidal chambers. Scale bars: 100 µm.

Kingdom

Animalia

Phylum

Bryozoa

Class

Stenolaemata

Order

Cyclostomata

SubOrder

Tubuliporina

Genus

Orectopora