Meles meles ( Linnaeus, 1758 )
publication ID |
https://doi.org/ 10.26879/581 |
persistent identifier |
https://treatment.plazi.org/id/1766284A-FFF7-DB41-FC73-9E48FC9EFD98 |
treatment provided by |
Felipe |
scientific name |
Meles meles ( Linnaeus, 1758 ) |
status |
|
Meles meles ( Linnaeus, 1758) View in CoL
Specimens. Complete, left c1 (JSJ/Mm/1).
Description. Massive and straight crown of the isolated canine fits well with the morphology of Meles meles canine. The single find from Solna Jama has no stratigraphic context, but almost certainly is not older than the Holocene.
Remarks. It is the most common mustelid in the late Pleistocene assemblages; it occurred through colder and warmer periods ( Wolsan, 1989; Sommer and Benecke, 2004; Mallye, 2007; Marciszak, 2012). This species commonly used caves and rock shelters as a place to rest and raise its young. Inhabiting rock crevices or digging burrows in cave deposits, it disturbed the deposit structure. Consequently, finding its remains in a layer does not imply that the age of the remains is the same as or similar to the age of the sediments or other objects found in the same horizon. An example of such behaviour is Mała Cave (South Poland). There, AMS C14 dating clearly indicated Holocene age of the finds that were previously estimated as late Pleistocene. Numerous Me. meles remains were found only in layer 22ab, while the burrow system reached Pliocene layers ( Wiszniowska, 1980). The species plays also an active role in the accumulation of debris: various organic materials accumulate in its burrows, sometimes in considerable quantities. Examples of such accumulations are the German sites Pisede 1 and 2, where Me. meles burrows contained huge amounts of fossil and subfossil material dated as the end of the last glaciation and the Holocene ( Peters et al., 1973).
Meles meles is a highly social animal with developed group structure and attached to the place, which the group may use for many generations (more than 100 years). The whole family can build a system of burrows and corridors of several hundred square metres. The presence of juvenile specimens confirms the use of caves as places to rear offspring ( Kurtén, 1965a; Wiszniowska, 1980; Mallye, 2007; Marciszak, 2012). Abiotic factors, predators and humans also played a role in the accumulation of Me. meles bones. There are numerous archaeological sites with abundant Me. meles remains with traces of human activity ( Lüps and Wandeler, 1993; Charles, 2000; Mallye, 2007).
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.