Pseudouroleptus jejuensis, Jung & Park & Min, 2014
publication ID |
https://doi.org/ 10.4467/16890027AP.14.016.1597 |
persistent identifier |
https://treatment.plazi.org/id/03E48796-5D5F-FFF3-FCC6-4CC91C93424D |
treatment provided by |
Tatiana |
scientific name |
Pseudouroleptus jejuensis |
status |
|
Comparison of P. jejuensis with similar species:
Pseudouroleptus caudatus is the sole species in the genus and consists of 2 subspecies (for review of the genus Pseudouroleptus , see Berger 2008): Pseudouroleptus caudatus caudatus Hemberger, 1985 and P. caudatus namibiensis Foissner, Agatha and Berger, 2002 . Pseudouroleptus jejuensis differs from these subspecies mainly by the number of dorsal kineties, which include an additional dorsal kinety in comparison with the other 2 subspecies. The detailed comparison is discussed below.
Pseudouroleptus caudatus caudatus View in CoL is the nominotypical subspecies and differs from P. jejuensis mainly by the dorsal kineties (4 vs. 5). However, the dorsal kineties are not clearly recognizable from previous reports ( Hemberger 1982, Foissner et al. 2002). Thus, to establish a new species in Pseudouroleptus View in CoL further investigation on the type species is necessary. Fortunately, Küppers and Claps (2013) reported the morphology of a Argentine population with a clear illustration of the dorsal kineties. The Argentine population has a consistent morphology with the type population and these two populations are located in the same continent, South America, so that conspecificity is beyond reasonable doubt. Based on a comparison with these populations of P. caudatus caudatus View in CoL , we confirm that the Korean population is a new species in Pseudouroleptus View in CoL . Pseudouroleptus caudatus caudatus View in CoL can be separated from P. jejuensis by dorsal kineties (4 vs. 5), and development of caudal cirri from dorsal kinety 3 anlage (present vs. absent). Additionally, the former species forms a single caudal cirrus in dorsal kinety 1 (vs. 3–5 in P. jejuensis ) ( Hemberger 1982, Berger 1999, Küppers and Claps 2013, Küppers pers. comm.).
Pseudouroleptus caudatus namibiensis View in CoL can be distinguished from P. jejuensis by having fewer adoral membranelles (33–51 vs. 52–62), right frontoventral cirri (20–31 vs. 46–58), dorsal kineties (4 vs. 5), and caudal cirri (1–4 vs. 4–7). In P. caudatus namibiensis View in CoL , the right frontoventral row is distinctly shorter than in P. jejuensis ; this difference in length results in the different number of cirri.
In the ontogenesis, the processes are almost identical in P. caudatus caudatus and P. jejuensis with the exception of these characteristics: i) the number of caudal cirri developed from dorsal kineties 1, 3 anlagen; and ii) the number of dorsal kineties developed from dorsal kinety 3 anlage. Although Hemberger (1982) described these numbers of P. caudatus caudatus in the text, clear illustrations are not available to support the description in his paper. Recently, Küppers and Claps (2013) reported the morphology of the Argentine population of P. caudatus caudatus . According to Küppers and Claps (2013) and a personal communication to Küppers, the Argentine population differs from the Korean population by 4 dorsal kineties (vs. 5), 1 caudal cirrus at the end of dorsal kinety 1 ( Küppers and Claps 2013, p. 70, Fig. 4C View Figs 4 ; vs. 3–5 caudal cirri), 1 caudal cirrus at the end of rightmost dorsal kinety ( Küppers and Claps 2013, p. 70, Fig. 4C View Figs 4 ; vs. caudal cirri lacking), and number of dorsal bristles in each row ( Küppers and Claps 2013, p. 70, Fig. 4C View Figs 4 ; DK1: 23 vs. 29–44; DK2: 23 vs. 29– 40; DK3: 21 vs. 25–40; rightmost DK: 21 vs. 24–37). These comparisons confirm the Korean population is new species.
Our gene trees support the assignment of this new species as a distinct species in Pseudouroleptus , with full supporting values ( Fig. 4 View Figs 4 ). With the exception of Stylonychinae, other nodes presented low supporting values. Additional SSU rRNA gene sequences of representative oxytrichids are required to clarify these relationships, and these sequences should be combined with morphological data even for well-known species.
Acknowledgements. This study was supported by the program on Management of Marine Organisms causing Ecological Disturbance and Harmful Effects funded by KIMST/MOF, the National Institute of Biological Resources (NIBR) of the Korean Ministry of Environment, as parts of the Discovery of Korean Indigenous Species Project 2013 and Graduate Program for the Undiscovered Taxa of Korea (1834-302), and the Inha University.
REFERENCES
Berger H. (1999) Monograph of the Oxytrichidae (Ciliophora, Hypotrichia). Monogr. Biol. 78: i– xii, 1–1080
Berger H. (2008) Monograph of the Amphisiellidae and Trachelostylidae (Ciliophora, Hypotricha). Monogr. Biol. 88: i– xvi, 1–737
Chao A., Li P. C., Agatha S., Foissner W. (2006) A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents. Oikos 114: 479–493
Darriba D., Taboada G. L., Doallo R., Posada D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772
Foissner W. (1991) Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. Eur. J. Protistol. 27: 313–330
Foissner W. (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. Eur. J. Protistol. 34: 195–235
Foissner W., Agatha S., Berger H. (2002 a) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib desert. Part I: Text and line drawings. Denisia 5: 1–1063
Foissner W., Agatha S., Berger H. (2002 b) Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib desert. Part II: Photographs. Denisia 5: 1064–1459
Foissner W., Al-Rasheid K. (2006) A unified organization of the stichotrichine oral apparatus, including a description of the buccal seal (Ciliophora: Spirotrichea). Acta Protozool. 45: 1–16
Foissner W., Berger H., Xu K., Zechmeister-Boltenstern S. (2005) A huge, undescribed soil ciliate (Protozoa: Ciliophora) diversity in natural forest stands of Central Europe. Biodivers. Conserv. 14: 617–701
Foissner W., Chao A., Katz L. A. (2008) Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 17: 345–363
Guindon S., Gascuel O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696–704
Hall T. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98
Hemberger H. (1982) Revision der Ordnung Hypotrichida Stein (Ciliophora, Protozoa) an Hand von Protargolpräparaten und Morphogenesedarstellungen. Dissertation, Universität Bonn
Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. (1998) Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403–405
Jung J.-H., Baek Y.-S., Kim S., Choi H.-G., Min G.-S. (2011) A new marine ciliate, Metaurostylopsis antarctica nov. spec. (Ciliophora, Urostylida) from the Antarctic Ocean. Acta Protozool. 50: 289–300
Jung J.-H., Min G.-S. (2009) New record of two species in stichotrichous ciliates (Ciliophora: Stichotrichia) from Korea. Korean J. Syst. Zool. 25: 227–236
Kimura M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120
Küppers G. C., Claps M. C. (2013) Hypotrichous ciliates (Protozoa: Ciliophora) from a temporary pond in Argentina, with redescription of Apoamphisiella hymenophora (Stokes, 1886) Berger, 1999. Zootaxa 3626: 55–76
Lynn D. H. (2008) The ciliated protozoa: Characterization, classification, and guide to the literature. Springer, New York
Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499
Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574
Sonnenberg R., Nolte A. W., Tautz D. (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front. Zool. 4: 6
Tamura K., Dudley J., Nei M., Kumar S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599
Vd’ačný P., Foissner W. (2012) Monograph of the dileptids (Protista, Ciliophora, Rhynchostomatia). Denisia 31: 1–529
Vd’ačný P., Bourland W. A., Orsi W., Epstein S. S., Foissner W. (2012) Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea). Mol. Phylogenet. Evol. 65: 397–411
Received on 4 th April, 2013; revised on 1 st August, 2013; accepted on 23 rd August, 2013
No known copyright restrictions apply. See Agosti, D., Egloff, W., 2009. Taxonomic information exchange and copyright: the Plazi approach. BMC Research Notes 2009, 2:53 for further explanation.
Kingdom |
|
Phylum |
|
Class |
|
Order |
|
Family |
|
Genus |
Pseudouroleptus jejuensis
Jung, Jae Ho, Park, Kyung Min & Min, Gi Sik 2014 |
P. jejuensis
Jung & Park & Min 2014 |
P. jejuensis
Jung & Park & Min 2014 |
P. jejuensis
Jung & Park & Min 2014 |
P. jejuensis
Jung & Park & Min 2014 |
P. jejuensis
Jung & Park & Min 2014 |
Pseudouroleptus caudatus namibiensis
Foissner, Agatha and Berger 2002 |
P. caudatus namibiensis
Foissner, Agatha and Berger 2002 |
Pseudouroleptus caudatus caudatus
Hemberger 1985 |
Pseudouroleptus
Hemberger 1985 |
P. caudatus caudatus
Hemberger 1985 |
Pseudouroleptus
Hemberger 1985 |
Pseudouroleptus caudatus caudatus
Hemberger 1985 |