Limosilactobacillus reuteri, REUTERI, 2020

Zheng, Jinshui, Wittouck, Stijn, Salvetti, Elisa, Franz, Charles M. A. P., Harris, Hugh M. B., Mattarelli, Paola, O’Toole, Paul W., Pot, Bruno, Vandamme, Peter, Walter, Jens, Watanabe, Koichi, Wuyts, Sander, Felis, Giovanna E., Gänzle, Michael G. & Lebeer, Sarah, 2020, A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae, International Journal of Systematic and Evolutionary Microbiology 70, pp. 2782-2858 : 2833

publication ID

https://doi.org/10.1099/ijsem.0.004107

DOI

https://doi.org/10.5281/zenodo.4728764

persistent identifier

https://treatment.plazi.org/id/03A8D903-D23C-0272-FC95-FD975424351B

treatment provided by

Valdenar (2021-04-29 20:05:09, last updated by Guilherme 2025-02-06 14:43:30)

scientific name

Limosilactobacillus reuteri
status

comb. nov.

DESCRIPTIONOF LIMOSILACTOBACILLUS REUTERI COMB. NOV.

Limosilactobacillus reuteri (reu ′ te.ri. N.L. gen. n. reuteri , of Reuter; named for G. Reuter, a German bacteriologist).

Basonym: Lactobacillus reuteri Kandler et al. 1982 , 266 VL

Prior to 1980, strains of the species were classified as L. fermentum Biotype II [ 268]. The species has been studied as model species to determine host-adaptation of intestinal lactobacilli, and co-adaptation of Limosilactobacillus and Lactobacillus species (e.g. L. taiwanensis ) that coexist in biofilms in intestinal ecosystems and preferentially different substrates [ 55, 56, 269]. L. reuteri is divided in host-adapted lineages that are equivalent to the taxonomic rank of subspecies [ 269, 270] and differ in their ability to form biofilms in the mouse forestomach [ 271]. Few strains of L. reuteri produce the antimicrobial compound reutericyclin with a polyketide synthase, which is a unique ability among lactobacilli [ 272]. The genome size of the type strain is 1.94 Mbp. The mol% G+C content of DNA is 38.6.

Isolated as dominant members of the intestinal microbiota of rodents, birds, swine, and in other intestinal ecosystems; also occurs in cereal fermentations, particularly type II sourdoughs [ 58]. Food isolates are of intestinal origin [ 273].

Thetype strain of the species is F 275 T = ATCC 23272 T =DSM 20016 T = JCM 1112 T =LMG 9213 T = LMG 13557 T.

Genome sequence accession number: AZDD00000000.

16S rRNA gene accession number: AP007281 View Materials .

269. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 2017; 83: e 00132 - 17.

270. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 2011; 7: e 1001314.

271. Frese SA, MacKenzie DA, Peterson DA, Schmaltz R, Fangman T et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet 2013; 9: e 1004057.

58. Ganzle MG. Fermented Foods. In: Doyle MP, Diez Gonzalez F, Hill C (editors). Food Microbiol. Fundam. Front, 5 th ed. ASM Press; 2019. pp. 855 - 900.

268. Kandler O, Stetter K-O, Kohl R. Lactobacillus reuteri sp. nov., a new species of heterofermentative lactobacilli. Zentralbl Bakteriol Hyg Abt IOrig C 1980; 1: 264 - 269.

272. Lin XB, Lohans CT, Duar R, Zheng J, Vederas JC et al. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri. Appl Environ Microbiol 2015; 81: 2032 - 2041.

55. Lin XB, Wang T, Stothard P, Corander J, Wang J et al. The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. ISME J 2018; 12: 2770 - 2784.

56. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J et al. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J 2012; 6: 927 - 938.

273. Zheng J, Zhao X, Lin XB, Ganzle M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci Rep 2015; 5: 18234.